On the Number of 3-Part Stable Partitions of the Half Graph

math
combinatorics
Author

sun123zxy

Published

May 4, 2025

Modified

May 5, 2025

Disclaimer: Results below are original and not formally verified. Stay sharp for potential mistakes.

Exercise 1 Determine the number of stable partitions of type \((a,b,c)\) of the half graph \(H_m\). Here \(1 \leq c \leq b \leq a \leq m\) and \(a+b+c = 2m\).

A stable partition of type \((a,b,c)\) is a partition of the vertices of the half graph \(H_m\) into three parts of \(a,b,c\) vertices respectively, such that no two vertices in the same part are adjacent.

u 1 u 2 u 3 u 4 v 1 v 2 v 3 v 4
Figure 1: The half graph \(H_4\) and the labeling of the vertices

Below we assume \(m \geq 2\) to avoid trivial cases.

Consider a refined problem: we wish to count the number of proper colorings of the half graph \(H_{m}\) with \(3\) colors denoted by \(\textcolor{red}{\mathrm{R}},\textcolor{green}{\mathrm{G}},\textcolor{blue}{\mathrm{B}}\), where \(a,b,c\) vertices are colored in \(\textcolor{red}{\mathrm{R}},\textcolor{green}{\mathrm{G}},\textcolor{blue}{\mathrm{B}}\) respectively. We also constraint the color of \(u_1\) to be \(\textcolor{red}{\mathrm{R}}\) and the color of \(v_m\) to be \(\textcolor{blue}{\mathrm{B}}\). Denote this number by \(\mathrm{rgb}_{a,b,c}\). It follows that the number of stable partitions of shape \((a,b,c)\) should be \[ \mathrm{ans}_{a,b,c} = \sum_{\text{distinct permutations of }(a,b,c)}\mathrm{rgb}_{a,b,c} \tag{1}\]

We claim that the generating function of \(\mathrm{rgb}_{a,b,c}\) is given by \[ \begin{aligned} \mathrm{RGB}(X,Y,Z) :&= \sum_{\substack{1 \leq a,c \leq m \\ 0 \leq b \leq m \\ a+b+c=2m}} \mathrm{rgb}_{a,b,c} X^a Y^b Z^c \\ &= \frac{X(Y+Z)}{1-X(Y+Z)} \cdot \left(XZ + \frac{YZ}{1-Z(X+Y)} \right) \\ &= \frac{XZ(X+Y)(Y+Z)(1-XZ)}{(1-X(Y+Z))(1-Z(X+Y))} \end{aligned} \] which may be illustrated by the following:

R ··· R G R / G ··· R / G G / B ··· G / B BB ··· B
(a)
R ··· RR G / B ··· G / B B
(b)
Figure 2: Possible colorings of the half graph

Now we try to extract the coefficients of \(\mathrm{RGB}(X,Y,Z)\). Taking the symmetry of \(X\) and \(Z\) into account, extract \(Y\) first and then \(X\) and \(Z\): \[ \begin{aligned} \mathrm{RGB}(X,Y,Z) &= \frac{XZ(X+Y)(Y+Z)(1-XZ)}{(1-X(Y+Z))(1-Z(X+Y))} \\ &= \frac{XZ(X+Y)(Y+Z)}{\left(1-\frac{X}{1-XZ}Y\right)\left(1-\frac{Z}{1-XZ}Y\right) (1-XZ)} \\ &= \frac{XZ(X+Y)(Y+Z)}{1-XZ} \sum_{i=0}^{\infty} \left(\frac{X}{1-XZ}\right)^i Y^i \sum_{j=0}^{\infty} \left(\frac{Z}{1-XZ}\right)^j Y^j \\ &= XZ(X+Y)(Y+Z) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \left(\frac{1}{1-XZ}\right)^{i+j+1} Y^{i+j} X^i Z^j \\ &= XZ(X+Y)(Y+Z) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \left( \sum_{k=0}^{\infty} \left(\!{\binom {i+j+1}{k}}\!\right) X^k Z^k \right) Y^{i+j} X^i Z^j \\ &= XZ(X+Y)(Y+Z) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \left(\!{\binom {i+j+1}{k}}\!\right) X^{i+k} Y^{i+j} Z^{j+k} \\ &= XZ (XZ + XY + ZY + Y^2) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \binom{i+j+k}{k} X^{i+k} Y^{i+j} Z^{j+k} \end{aligned} \] where \(\left(\!{\binom {i+j+1}{k}}\!\right) = \binom{k+(i+j+1)-1}{k} = \binom{i+j+k}{k}\) is the multiset binomial coefficient.

To extract the coefficent for each \(X^a Y^b Z^c\), denote by \(a',b',c'\) the exponents of \(X,Y,Z\) excluding the contribution of the first part of the above equation. Solve the linear equation system \[ \left\{\begin{aligned} a' &= i+k \\ b' &= i+j \\ c' &= j+k \\ m' &= i+j+k \\ & i,j,k \geq 0 \end{aligned}\right. \implies \left\{\begin{aligned} m' &= \frac 1 2 (a' + b' + c') \\ i &= \frac 1 2 (a' + b' - c') &= m' - c' \\ j &= \frac 1 2 (- a' + b' + c') &= m' - a' \\ k &= \frac 1 2 (a' - b' + c') &= m' - b' \\ & 0 \leq a',b',c' \leq m' \end{aligned}\right. \] Thus we have \[ \begin{aligned} \mathrm{rgb}_{a,b,c} &= \sum_{\substack{i,j,k \geq 0 \\ \text{constrainted by } a,b,c}} \binom{i+j+k}{k} \\ &= \sum_{\substack{i,j,k \geq 0 \\ \text{constrainted by } a,b,c}} \binom{m'}{b'} \\ &= [0 \leq a-2, b, c-2 \leq m-2] \binom{m-2}{b} &+&& [0 \leq a-2, b-1, c-1 \leq m-2] \binom{m-2}{b-1} \\ &+ [0 \leq a-1, b-1, c-2 \leq m-2] \binom{m-2}{b-1} &+&& [0 \leq a-1, b-2, c-1 \leq m-2] \binom{m-2}{b-2} \\ &= [2 \leq a \leq m] [2 \leq c \leq m] \binom{m-2}{b} &+&& [2 \leq a \leq m] [1 \leq c \leq m-1] \binom{m-2}{b-1} \\ &+ [1 \leq a \leq m-1] [2 \leq c \leq m] \binom{m-2}{b-1} &+&& [1 \leq a \leq m-1] [1 \leq c \leq m-1] \binom{m-2}{b-2} \end{aligned} \] Combining this with Equation 1 solves the problem.

We check a few special cases. For the case \((m,*,*)\), we have \[ \begin{aligned} \mathrm{rgb}_{a,m,c} &= 1 \\ \mathrm{rgb}_{m,b,c} &= \begin{cases} \binom{m-2}{b-1} & c=1 \\ \binom{m-2}{b} + \binom{m-2}{b-1} & 2 \leq c \leq m-1 \\ \binom{m-2}{b} & c=m \end{cases} = \begin{cases} 1 & b=0,\,m-1 \\ \binom{m-1}{b} & 1 \leq b \leq m-2 \\ \end{cases} = \binom{m-1}{b} \\ \mathrm{ans}_{m,b,c} &= \begin{cases} \mathrm{rgb}_{m,b,c} + \mathrm{rgb}_{m,c,b} + \mathrm{rgb}_{b,m,c} + \mathrm{rgb}_{c,m,b} + \mathrm{rgb}_{b,c,m} + \mathrm{rgb}_{c,b,m} = 2 \binom{m-1}{b} + 2 \binom{m-1}{c} + 2 & b \neq c \\ \mathrm{rgb}_{m,m/2,m/2} + \mathrm{rgb}_{m/2,m,m/2} + \mathrm{rgb}_{m,m/2,m/2} = 2 \binom{m-1}{m/2} + 1 & b = c \end{cases} \end{aligned} \] For the case \((m-1,m-1,2)\), we have \[ \begin{aligned} \mathrm{rgb}_{m-1,m-1,2} &= 2 \binom{m-2}{m-2} + \binom{m-2}{m-3} = m \\ \mathrm{rgb}_{m-1,2,m-1} &= \binom{m-2}{2} + 2 \binom{m-2}{1} + \binom{m-2}{0} = \binom{m}{2} \\ \mathrm{ans}_{m-1,m-1,2} &= \mathrm{rgb}_{m-1,m-1,2} + \mathrm{rgb}_{m-1,2,m-1} + \mathrm{rgb}_{2,m-1,m-1} = \binom{m+1}{2} \end{aligned} \] These are consistent with the results of brute-force computation.