
Classification of Quardratic Forms over Q

sun123zxy

2025-04-161

1Last modified on 2025-04-22.
sun123zxy Classification of Quardratic Forms over Q 2025-04-16 1 / 35



Table of Contents

1 First Attempts and General Approachs
Example: Quadratic Forms over R and Fq
Quadratic Spaces
The Common Represented Element Method
Global and Local Equivalence

2 Quadratic Forms over Qp and Q
Structure of Q×

p /(Q×
p )

2

The Hilbert Symbol
Invariants that Determines the Range
Classification

sun123zxy Classification of Quardratic Forms over Q 2025-04-16 2 / 35



Table of Contents

1 First Attempts and General Approachs
Example: Quadratic Forms over R and Fq
Quadratic Spaces
The Common Represented Element Method
Global and Local Equivalence

2 Quadratic Forms over Qp and Q
Structure of Q×

p /(Q×
p )

2

The Hilbert Symbol
Invariants that Determines the Range
Classification

sun123zxy Classification of Quardratic Forms over Q 2025-04-16 3 / 35



Foreword

References relied on heavily:
J.P. Serre “A Course in Arithmetic” [Ser73]
Shiva Chidambaram, MIT18.782 Introduction to Arithmetic Geometry
(Spring 2023) Lecture Notes
Arushi Gupta, Participant Papers of The University of Chicago
Mathematics REU 2018, The p-adic Integers, Analytically and
Algebraically

May serve as a guidance of the first part of [Ser73]
Assume familarity of quadratic residues and basic knowledge of p-adic
numbers
Skip most of the proofs
Apology in advance for potential mistakes
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https://math.mit.edu/classes/18.782/2023sp/LectureNotes9.pdf
https://math.uchicago.edu/~may/REU2018/REUPapers/Gupta.pdf
https://math.uchicago.edu/~may/REU2018/REUPapers/Gupta.pdf


Notations

We denote by K an arbitrary field. All fields are assumed to be of
characteristic 6= 2.
νp : Qp → Z being the p-adic valuation.(

a
p

)
being the Legendre symbol. a is understanded as

p−νp(a)a mod p if a ∈ Qp. Define this similarly in Fq.
Let f ⊕ g denote the direct sum of two quadratic forms f and g.
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Review: Quadratic Forms over R

A quadratic form f : V → K may be identified by a symmetric matrix
A ∈ Mn(K) by f(v) = vTAv.
Their equivalence is defined by congruence:
A ∼ B ⇐⇒ A = QTBQ.
Real symmetric matrices may be diagonalized orthogonally.
Scale each eigenvalue by multiplying a square. Only their sign
matters.

the rank n, an invariant
the signature (r, s) := (#positive eigenvalues,#negative eigenvalues).

Same rank and signature implies the equivalence.
Sylvester’s law of inertia: signature is also an invariant.
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Some Refinement

On an abitrary field K:
All symmetric matrix is equivalent to a diagonal one.

Pick a non-isotropic vector v (exists when the form is nonzero), its
orthogonal complement is a hyperplane and does not include v.
Change basis and do the induction.

The rank is always a invariant. We may (and we shall always) reduce
to classify the non-degenerate quadratic forms of rank n.
The squares (K×)2 give us the ability to scale. Knowledge of
distribution of diagonal elements in K×/(K×)2 suffices to show the
equivalence2.

C×/(C×)2 ∼= {1}, suffices to classify by the rank.
R×/(R×)2 ∼= {1,−1}, signature is also needed.
F×

q /(F×
q )2 ∼= {1, a}, where a ∈ Fq is a quadratic nonresidue.

For Qp and Q?
2Though working in the refined structure {0} ∪ K×/(K×)2 is probably a better idea

if one wish to deal with the degenerate case in a uniform manner.
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Another Example: Quadratic Forms over Fq

We classify the non-degenerate quadratic forms of rank n.
Refined signature: counting nonzero quadratic residues and
nonresidues. It may serve as a sufficient criterion of the equivalence.
But it’s not an invariant. aX2 + aY2 ∼ X2 + Y2 over Fq.

Do a change of basis X = sU + tV and Y = tU − sV. If we require
aU2 + aV2 = X2 + Y2, then s2 + t2 = a.
It always has a nonzero solution in Fq: s2 and a − t2 have both
(q + 1)/2 possible values, thus must reach a common value.

The discriminant d :=

(
det(A)

q

)
∈ F×

q /(F×
q )

2 is an invariant and
reveals the parity of the signature. It classifies the non-degenerate
quadratic forms over Fq.

Insight: Existence of nonzero solutions of the equation aX2 + bY2 = Z2 in
K seems to be of great importantance.
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Quadratic Spaces

The structure of a quadratic space, i.e. vector space equipped with a
symmetric bilinear form, is much more subtle than its positive-definite
counterpart over R or C. For example, for a non-degenerate quadratic
space V and a subspace U of V ([Ser73] p. 28, chap. 4, sec. 1.2):

U ∩ U⊥ = rad(U), dimU + dimU⊥ = dimV, (U⊥)⊥ = U
U ⊕ U⊥ = V iff U + U⊥ = V iff rad(U) = 0
It’s much harder to show that an orthogonal basis of U expands to an
orthogonal basis of V.
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Structure of Quadratic Spaces
We mention some results here without details.
Theorem 1.1 (Witt ([Ser73] p. 31, chap. 4, sec. 1.5, theorem 3))

Every injective metric-preserving map from a subspace U of a quadratic
space V to another quadratic space W may be extended to a
metric-preserving map from V to W.

Theorem 1.2 (Witt’s cancellation ([Ser73] p. 34, chap. 4, sec. 1.6,
theorem 4))

f1 ⊕ g1 ∼ f2 ⊕ g2 and g1 ∼ g2 implies f1 ∼ f2.

Theorem 1.3 (Witt’s decomposition)

Every quadratic space V is a direct sum of: rad(V), an anisotropic
quadratic space (i.e. its nonzero vectors has nonzero norms) and a split
quadratic space (i.e. U = U⊥, full of hyperbolas)
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Another Invariant: The Range

On an abitrary field K, we say that a quadratic form f represents a ∈ K if
there exists a nonzero v ∈ V such that f(v) = a.

The range of f, Im f, is an invariant.
It may be viewed in {0} ∪ K×/(K×)2.
Is it complete?
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Insights from the Range

Proposition 1.1 (([Ser73] p. 33, chap. 4, sec. 1.6, corollary 1))

Let a ∈ K×. TFAE:
f represents a
f ∼ g ⊕ (Z 7→ aZ2) where g is of rank rk f − 1.
f ⊕ (Z 7→ −aZ2) represents 0.

Insight from line 3: To understand the range, it suffices to examine
when a quadratic form represents 0.
Insight from line 2 (the common represented element method): Say
f1, f2 are nozero and represent a common a ∈ K×. Reducing
Z 7→ aZ2, if only g1 and g2 also share a common represented element…
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Insights from the Range

Sadly, range is not always a complete invariant.
Otherwise all indefinite quadratic forms over R are equivalent, absurd.

But we shall show that when K = Qp and moreover K = Q, it plays a
subtle role in the classification of quadratic forms. This requires a
more precise characterization of the range.
In fact, if only there are some simple invariants that can fully
determines the range…
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Global and Local Equivalence

Fact: Field extensions preserve the equivalence of quadratic forms.
Example: Equivalence classes are finer over R than those over C.

Q ↪→ R, thus the rank and the signature are invariants. But we need
more information to classify.
Other field extension of Q? Q ↪→ Qp

Theorem 1.4 (Hasse-Minkowski ([Ser73] p. 41, chap. 4, sec. 3.1,
theorem 8))

f represents 0 over Q iff it represents 0 over R and all Qp.

To gain more invariants for Q (especially those related to the range),
let’s classify quadratic forms over Qp first.
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Structure of Q×
p

Q×
p
∼= Z× Z×

p by collecting common powers of p
Z×

p
∼= F×

p × (1 + pZp) by a 7→ a mod p
It splits by the explicit construction of a primitive root of order p, via
Hensel’s lemma / Teichmüller lift limn→∞ gpn , where g is a primitive
root of F×

p .
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Structure of 1 + pZp and the log / exp map

For p 6= 2, α ≥ 1 or p = 2, α ≥ 2:

1 + pαZp ∼= (pαZp,+) ∼= (Zp,+)

1 + pαa 7→ log(1 + pαa)

For p = 2, α = 1,

1 + 2Z2 ∼= Z/2Z× (1 + 4Z2)

by 1 + 2a 7→ a mod 2
It splits by the explicit construction of a primitive root of order 2:
(−1,−1, . . . ) =

∑+∞
n=0 2n.

(1 + 4Z2) ∼= (4Z2,+) ∼= (Z2,+) by the log map
Thus

1 + 2Z2 ∼= Z/2Z× (Z2,+)
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Quadratic residues of Qp

For p 6= 2:
Q×

p
∼= Z× F×

p × (Zp,+)

2 is a unit in Zp. Thus a ∈ (Q×
p )

2 iff νp(a) mod 2 = 0 and
a mod p ∈ F×

p is a quadratic residue.
Q×

p /(Q×
p )

2 ∼= Z/2Z× Z/2Z, generated by p and a, where a mod p is
a quadratic nonresidue�

For p = 2:
Q×

2
∼= Z× Z/2Z× (Z2,+)

Quadratic residues of (Z2,+) are (2Z2,+), which pulls back to
1 + 8Z2.
a ∈ (Q×

2 )
2 iff ν2(a) mod 2 = 0 and a mod 8 ≡ 1.

Q×
2 /(Q

×
2 )

2 ∼= Z/2Z× Z/2Z× Z/2Z, generated by 2, 3 and 5.
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The Hilbert Symbol

The Hilbert symbol over Qp is defined as:

〈a, b〉 :=
{

1 if aX2 + bY2 = Z2 has a nonzero solution in Qp

−1 otherwise

The symbol may be also viewed in {0} ∪Q×
p /(Q×

p )
2 or even more simply

in Q×
p /(Q×

p )
2 when working with non-degenerate forms.3

3Lots of the resources, even [Ser73], switch between these three views without
enough warning. Sadly we shall also commit this ususal mild sin (and have already done
to other innocent invariants such as the discriminant…)
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Properties of the Hilbert Symbol

〈a,−a〉 = 1
〈a, b〉 = 〈b, a〉 (symmetric)
If 〈a2, b〉 = 1, then 〈a1a2, b〉 = 〈a1, b〉

In fact, 〈a1a2, b〉 = 〈a1, b〉〈a2, b〉 (multiplicatively bilinear)
〈a, b〉 = 1 for all b iff a ∈ Q2

p (nondegenerate)
the Hilbert symbol is a non-degenerate symmetric bilinear form of the
F2-vector space Q×

p /(Q×
p )

2

This is a non-trivial result and is said to be, to some extent, a
generalization of the law of quadratic reciprocity in local class field
theory.
To show above over Qp, we develop an explicit formula for the Hilbert
symbol.
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The Explicit Formula of the Hilbert Symbol

Theorem 2.1 (([Ser73] p. 20, chap. 3, sec. 1.2, theorem 1))

Say a = pαu and b = pβv are p-adic numbers where u, v ∈ Z×
p , then

〈a, b〉 = (−1)α·β·
p−1

2

(
u
p

)β (v
p

)α

if p 6= 2

We omit the case p = 2. It’s a tedious modification of the above formula.

0 1 a p
0 1 1 1 1
1 1 1 1
a 1 −1
p (−1)

p−1
2

Table 1: Table of Hilbert symbol, p 6= 2
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The Hasse Invariant

Recall that we have reduced to work with non-degenerate diagonalized
quadratic forms of rank n. Recall that the discriminant

d(f) = a1a2 . . . an ∈ Q×
p /(Q×

p )
2

is an invariant.
Define the Hasse invariant ε(f) :=

∏
1≤i<j≤n〈ai, aj〉

It is an invariant:

ε(f) =
∏

1≤i<j≤n
〈ai, aj〉 = ε(f1)

∏
2≤j≤n

〈a1, aj〉 = ε(f1) · 〈a1, a1d(f)〉

Thus ε is preserved under contiguous change of orthogonal bases
(fixes one of the vector of the basis)

For n ≥ 3, orthorgonal bases are transitive under contiguous change
([Ser73] p. 30, sec. 4.1.4, theorem 2)

sun123zxy Classification of Quardratic Forms over Q 2025-04-16 29 / 35



d and ε Determine the Range

Theorem 2.2 (([Ser73] p. 36, chap. 4, sec. 2.2, theorem 6))

For a non-degenerate quadratic form f of rank n over Qp, the range of f is
determined by the discriminant d := d(f) and the Hasse invariant ε := ε(f).
Or, in detail, f represents 0 iff:

For n = 2: d = −1
For n = 3: 〈−1,−d〉 = ε
For n = 4: d 6= 1 or d = 1 and ε = 〈−1,−1〉
For n = 5: no conditions

Recall that f represents a ∈ Q×
p /(Q×

p )
2 iff f ⊕ (Z 7→ −aZ2) represents 0,

thus above fully characterizes the range.
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Classification of Quadratic Forms over Qp

Theorem 2.3 (([Ser73] p. 39, chap. 4, sec. 2.3, theorem 7))

Two non-degenerate quadratic forms of rank n over Qp are equivalent iff
they have the same discriminant d and Hasse invariant ε.

f, g have same d and ε, thus have the same range. Say they both
represent a ∈ Q×

p /(Q×
p )

2.
Then f ∼ f1 ⊕ (Z 7→ aZ2), where f1 is of rank n − 1.
d and ε of f1 can be determined:

d(f1) = ad(f)
ε(f1) = ε(f) · (a, ad(f)) (shown when discussing the invariance of ε)

The same for g. Thus f1, g1 shares the same d and ε (thus also their
range). QED by induction.
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Classification of Quadratic Forms over Q

Theorem 2.4 (([Ser73] p. 39, chap. 4, sec. 2.3, theorem 7))

Two non-degenerate quadratic forms of rank n over Qp are equivalent iff
they are equivalent over R and over each Qp.

Say f, g are equivalent over each local field (Qp and R), thus they
share the same range locally.
By Hasse-Minkowski theorem, they also share the same range globally
over Q.
Then f ∼ f1 ⊕ (Z 7→ aZ2) globally, where f1 is of rank n − 1. The
same for g.
f1 ∼ g1 locally by Witt’s cancellation theorem. QED by induction.
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Problem Remains

Proof of the Hasse-Minkowski theorem
essentially needs some understanding of the global property of the
Hilbert symbol, which we have not discussed (cf. [Ser73])

Refine the theory for degenerate quadratic forms (relatively easy)
Enumerate all the equivalence classes of quadratic forms over Qp and
Q (cf. [Ser73])
To what extent can we use the common represented element method
to classify quadratic forms over other fields?
For which fields, the range of a quadratic form is a complete
invariant? (At least R fails. Q, Qp?)
What can we say about Q×/(Q×)2?
Classification of quadratic forms over commutative rings (e.g. Z,
Z/mZ)
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